e i π + 1 = 0 {\displaystyle e^{i\pi }+1=0}
∫ − ∞ ∞ e − x 2 d x = π {\displaystyle \int _{-\infty }^{\infty }e^{-x^{2}}\mathrm {d} x={\sqrt {\pi }}}
H ^ Ψ = i ℏ Ψ ˙ {\displaystyle {\hat {H}}\Psi =i\hbar {\dot {\Psi }}}
ζ ( α + i β ) = 0 a n d β = 0 → α = 1 2 {\displaystyle \zeta (\alpha +i\beta )=0\ \mathrm {and} \ \beta =0\to \alpha ={\frac {1}{2}}}